Mgr. Jonathan Verner, PhD.

I am a researcher at the Department of Logic. My research focuses on Set Theory. In particular I am excited by filters and ultrafilters, forcing, infinite combinatorics and the structure of the real line. Occasionally I also dabble into large cardinals (again mostly either in connection with ultrafilters or forcing or both).


Articles (12)


D. Raghavan, J. Verner Chains of P-points (submitted)
T. Lavicka, J. Verner Completely separably MAD families and the modal logic of $\beta\omega$ (preprint)
S. Shelah, J. Verner Ramsey partitions of metric spaces (preprint)
J. Brendle, B. Farkas, J. Verner Towers in Filters, Cardinal Invariants and Luzin Type Families Journal of Symbolic Logic, 2018


R. Honzík, J. Verner A lifting argument for generalized Gregorieff forcing Notre Dame Journal of Formal Logic, 2016 57 (2) 57 (2) 2016 221-231
W. Brian, J. Verner $G_\delta$ and co-meager semifilters Fundamenta Mathematicae, 2016 235 2016 153-166


J. Verner Filter convergence in $\beta\omega$ Acta Universitatis Carolinae. Philosophica et Historica, 2010 2 2 2013 87-90
J. Verner Lonely points revisited Commentationes Mathematicae Universitatis Carolinae, 54 1 1 2013 105-110
A. Blass, M. Hrušák, J. Verner On strong $P$-points
J. Verner On strong P-points 2013 2875-2883


M. Hrušák, J. Verner Adding ultrafilters by definable quotients Rendiconti del Circolo Matematico di Palermo, 60 3 3 2011 445-454


J. Verner Lonely points in ω*

Other (2)


D. Chodounský, J. Verner Toposym Book of Abstracts 2016


T. Pazák, J. Verner Toposym 2011 Book of Abstracts 2011